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I. Introduction 

Calculations of the energy bands of solids can be classi- 

fied into two broad groups: first-principle calculations which 

directly solve a given one-electron crystal wave equation, or 

interpolative calculations which describe the bands in terms 

of a minimal basis set and corresponding disposable parameters. 
In the first group we include Orthogonalized Plane Wave (OPW) 192 

and Augmented Plane Wave (APW) 3 methods as well as the Green's 

function method. 4'5 In the second group are the atomic orbital 
6 scheme of Slater and Koster and the semi-empirical approaches 

based on pseudopotentials. 7,8 

One of the first approaches to the band structure of  solids 

was the LCAO or tight-binding method. The condition for its 

validity is that the one-electron wave functions be highly local- 

ized around each atomic core, with small overlap onto adjacent 

atoms. This condition is usually well met by the valence states 

of the rare gas solids and ionic crystals. In particular, it has 
beer, used te calculate t he  '"-a:znce "van& st ructui te  of K219 W i l i C i l  

roughly corresponds to 3p atomic wave functions localized on the 

CI- ions. 

The valence bands of the alkali halides furnish a simple 

example of the utility o f  an abstract approach. 'Howland considers 

separately the cases where the bands are derived from orbitals of 

3p(Cl-) alone (a 3 x 3 secular equation), and where the basis set 

contains 3s(C1-), 3p(K+) and 3 s ( K + )  orbitals also (an 8 x 8 secu- 
lar equation). Energies from these two band structures'' are 
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l i s t e d  i n  Table I. The forms of t h e  bands are seen  t o  be s i m i -  

l a r  t o  wi th in  lo"/" , but t h e  widths d i f f e r  by a f a c t o r  of 1.9. 

Hence, a good d e s c r i p t i o n  of t h e  h a l i d e  valence bands can be 

g iven  i n  terms of only two "ei7fective" overlap i n t e g r a l s  (ppu-) 

and ( p p r ) .  The "e f f ec t ive ' '  over lap i n t e g r a l s  t u r n  out  t o  have 

t h e  same s i g n  and r a t i o  a s  those c a l c u l a t e d  from 3p h a l i d e  atomic 

o r b i t a l s ,  but a r e  only about half  as l a r g e .  The " e f f e c t i v e "  

bas i s  func t ions  a re  s imi la r  t o  Wannier func t ions ,  which are more 

l o c a l i z e d  and hence e x h i b i t  smal le r  overlap.  

I n  view of t h e  success fu l  reduct ion  o f  t h e  a c t u a l  bands 

der ived  us ing  e i g h t  bas i s  func t ions  t o  an a b s t r a c t  model us ing  ' 

only t h r e e  bas i s  func t ions  and two shape parameters, one may 

now c a r r y  t h e  process  o f  a b s t r a c t i o n  one s t e p  f u r t h e r  and d e t e r -  

mine t h e  shape parameters d i r e c t l y  from experiment. T h i s  has 

been done f o r  CsBr  from o p t i c a l  data;  t h e  measured parameters 

seem t o  be only 213 of  those ca l cu la t ed  from e i g h t  basis func- 

t ions .  'jl' T h i s  i n d i c a t e s  t h a t  a f u r t h e r  reduct lon  i n  ca l cu la t ed  

h2nd h!I.dth rr:nrrlil be  nbtained frnrn 2 cnmP1PtP s e t  nf ( e u 2 c t )  

Wannier bas i s  func t ions .  From t h i s  example we conclude tha t  an 

a b s t r a c t  scheme may a c t u a l l y  y i e l d  b e t t e r  agreement with exper i -  

ment t h a n  do f i r s t  p r i n c i p l e s  ca l cu la t ions .  It a l s o  es tabl ishes  

a procedure f o r  ob ta in ing  matrix elements between a b s t r a c t  basis 

f u n c t i o n s  ( i n  t h i s  case Wannier func t ions ) ,  al though t h e  exp l i -  

c i t  de te rmina t ion  of t hese  funct ions i s  not requi red  and may be 

inconvenient  i n  p r a c t i c e .  



3 

The formal treatment given in Section I1 closely parallels 

the OPW method. However, calculation of the 3d states requires 
a comblned tight-binding and plane wave approack. 2 -1 Such an ap- 

proach is cumbersome if carried out rigorously. In Section I11 

we show that existing APW calculations justify representation 

of the d bands alone by the Slater-Koster method. 

the s-p conduction band states are discussed including the ef- 

fects of orthogonality to the d bands. In Section V we treat 

s-d hybridization, and derive a parametric representation for 

the s-d potential terms. 

In Section IV, 

At first sight, it might appear that treatment of the s-d 

interactions could be facilitated by use of  group theory. Along 

certain lines of the Brillouin zone, symmetrical combinations of 

plane wave conduction band states can be formed which will be 

orthogonal to most of the d band states. The symmetry employed 

is that of the group o f  each symmetry line. This approach does 

indeed simplify the treatment of s-d hybridization effects along 

the (loo), (110) and (111) axes. We have found, however, that 

for general - k values, this approach alone makes it very diffi- 
cult to parameterize s-d interactions. 

For this reason we have found it necessary to introduce a 

much stronger ansatz which is not consistent with group theory. 

However, the ansatz is valid to a good approximation, and therein 

lies its suitability for reducing the complexity of the parameter- 

ized representation. We assume that prior to hybridization with 

the lower plane waves the radial d wave functions in a given 
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atomic c e l l  a r e  t h e  same f o r  a l l  I & I and are independent of 

band index n. Thus t h e  d s t a t e s  a r e  regarded as p a r t  of the 

s p h e r i c a l l y  symmetric atomic core.  We j u s t i f y  our  I s o t r o p i c  

model f o r  d s t a t e s  by d i r e c t  comparison wi th  APW band calcu-  

l a t  ions.  

The i n t e r p o l a t i o n  scheme developed here  determines En(&) 

throughout t h e  B r i l l o u i n  zone. 

k one can a l s o  expand En(Z)  i n  powers of & - k . T h i s  ap- -fx -0c 

proach, u sua l ly  c a l l e d  &-E per tu rba t ion  theory,  fu rn i shes  re- 

l a t i o n s  between our parameterized i n t e r a c t i o n s  and sheds l i g h t  

on t h e i r  a n a l y t i c  cha rac t e r .  It i s  discussed elsewhere. 

Near p o i n t s  o f  high symmetry 

16 

11. General Theory. 

To be s p e c i f i c ,  we consider  I n  t h i s  paper only monatomic 

f c c  metals  such as  N i  and Cu, although o u r  r e s u l t s  could e a s i l y  

be extended t o  monatomic bcc t r a n s i t i o n  metals  a s  wel l .  The 

b a s i s  s t a t e s  a r e  chosen as  f o l l o w s .  To descr ibe  t h e  d bands, 

f i v e  s t a t e s  a r e  required.  These a r e  taken t o  be p ropor t iona l  
L -  2 2 2 2 
bU xj;, XZ, yz,  x - y and 32 - r , which form a convenient 

r e p r e s e n t a t i o n  f o r  t he  angular  dependence of  t igh t -b inding  d 

s t a t e s  i n  a cubic l a t t i c e .  The lowes t  conduction bands i n  t h e  

p o s i t i v e  1/48th p r imi t ive  sec t ion  o f  t h e  B r i l l o u i n  zone ( s e e  

Fig.  1) can be descr ibed using t h e  f o u r  OPW's which a r e  degener- 

a t e  a t  the point'W i n  the  empty l a t t i c e .  These a r e  l a b e l l e d  
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by their principal plane wave components (& + I&), where the 

reciprocal lattice vectors 5, are 

-2 K = ( 0 ,  T, 0 )  

in units of 27r/a, and where barring means the negative. 

Using these basis states, our 9 x 9 Hamiltonian will have 

the block form: 

5 4 

5 

4 

I 

d-c 

d-d , 
I 

e-d I C-c 

- - -  - - - -  

In (2.2) d and c stand for d band and conduction band states, 

respectively. At a general point, k, of the Brillouin zone all - 
the matrix elements in (2.2) are non-zero. 

We assume throughout that o u r  basis functions are orthogonal, 

so that our secular equation has the form 

det i Hij - “ Z i j  1 = W ( 2 . 3 )  

The assumption of orthogonality is essential if the abstract 

representation is to achieve the simplicity desired. 

here briefly reasons for hoping that a simple parametric representa- 

tion of the matrix elements of (2.3) is feasible. 

We mention 

For the d bands we have the work of Fletcher and Wohlfarth 17 

who neglected non-orthogonality terms between d orbitals on dif- 
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f e r e n t  atoms. We w i l l  show t h a t  the form of the d bands alone,AS 

given by APW c a l c u l a t i o n s ,  i s  very c l o s e  t o  that obta ined  by 

F l e t c h e r  and Wohlfarth. 

For the conduction bands w e  f i n d  i t  necessary,  i n  the s p i r i t  

of t he  OPW and pseudopotent ia l  methods, t o  in t roduce  energy- 

dependent o r thogona l i ty  terms. These occur  i n  the  c-c block, and 

t h e i r  a n a l y t i c  form i s  determined by our  ansa t z  of d i so t ropy .  Be- 

cause the width of the d band i s  comparable t o  the  d i f f e r e n c e  i n  

energy between the  conduction bands and t h e  d bands, t hese  terms a r e  

no longe r  a c c u r a t e l y  propor t iona l  t o  ( E  - E d ) ,  as i n  the  OPW method. 

A l s o  l e s s  appropr i a t e ,  near  d-c c rossover  po in t s ,  i s  the  pseudo- 

p o t e n t i a l  approximation E --t E,, where E, i s  a f r e e - e l e c t r o n  energy. 7,8 

Our procedure f o r  e s t a b l i s h i n g  each term i n  the  s e c u l a r  

equat ion  i s  t o  make the  genera l  a n s a t z  of  d i so t ropy  and then t o  

determine the  radial  behavior of each term as a f 'unction o f  k by 

d i r e c t  comparison w i t h  energy bands obtained by APW c a l c u l a t i o n s  

involv ing  much l a r g e r  s e c u l a r  equat ions.  The 1 1 1  s i g n i f i c a n c e  

n f  this procedure will be t r e a t e d  i n  our  summary. We f i n d  that  

the  approximations t o  the  or thogonal i ty  terms mentioned i n  the  

preceding paragraph o f t e n  produce only small e r r o r s ,  and that  f o r  

many purposes a s impler  r ep resen ta t ion  i s  adequate. Nevertheless,  

the full matr ix  form rep resen t s  t h e  most c o n s i s t e n t  and l o g i c a l l y  

c o r r e c t  developrne'nt of the  i so t ropy  ansa tz ,  and hence forms 

the basis of our exposi t ion.  Our u l t i m a t e  c r i t e r i o n  f o r  
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the successful reduction of the large secular equation--as well 

as our justification for the parameterization of the various 

terms in the Hamiltonian--will be the same one used in developing 

pseudopotentials, viz., success in obtaining En(&) Itself for the 

bands n of interest. 

111. Tight Binding Representation of d Bands. 

The tight-binding approximation may be formulated in several 

different ways. 

between nearest neighbor basis functions. When the non-orthogonal- 

ity terms are eliminated by unitary transformation of the tight- 

One may retain or neglect non-orthogonality terms 

binding basis functions, the new basis functions are called Wannier 

or L8wdin functions. Although this transformation does not alter 

the atomic symmetry of the basis functions and considerably simpli- 

fies the secular equation, it is difficult to carry out accurately. 

Another variation consists of neglecting three-centered integrals 

and non-orthogonality terms. This simplification, called the two- 

center approxima tion, leads to substantial reductions in the nwn- 
-- -a -----l .-.n n n n ~ m n t p m n  - U C L '  UL u v  GL ray pur ~ 1 1 . -  --- - - 

Neglecting the s-p conduction bands, Fletcher and Wohlfarth 17 

have calculated the band structure of NI using the two-center ap- 

proximation. They obtain a 5 x 5 secular equation in terms of 
certain nearest neighbor overlap integrals. These they calculate 
using wave functions and a p o t e n t i a l  derfved by Hartree and Harkree 18 

for Cu'. Although FW calculate six parameters, these are exactly 



equivalent to linear combinations of three two-center parameters. 

The relations satisfied by the s ix  FW parameters In the two-center 
approximat ion 6 are : 

(ddn + dd8 2 A2 = 

(ddn - ddd ) 2 A3 = 

A4 = ddr 

= - -$ ($ dde + ddn + 8 dd6 ) A5 

(3.1) 

Using our combined interpolation scheme, we have fitted the 
19 

d bands and conduction bands of Cu as calculated by the APW method. 

Initially, we treated the general parameters such as A in ( 3 . 1 )  

as independent. 

can be used to determine the three two-center, nearest neighbor 

overlap integrals. 

appendix B), I s  

Our best values for the first neighbor parameters 

The result, in terms of our parameters Pi (See 

dde = p6); ( p 7  - p6); 3 1 (3p3 - p7) ( 3 . 2 )  
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We compare the fitted left-hand sides of ( 3 . 2 )  - ( 3 . 4 )  with the 
values for the right-hand sides derived from (3.1) in Table 11. It 

appears that the two-center approximation is valid to about 6%. 

The corresponding differences in d band energy levels are at most 

0.004 Ey., with one exception. 

The exceptionally large three-center contribution is repre- 

relative to G2, which is sented by the zero of energy of r 25 ' 
described in the notation of ref. 6 by Ell(OOO) - E55(OOO) = 0.008 Ry. 

(Note that this is - not equivalent to &* - r25,. ) We have there- 

fore included this correction explicitly in the Hamiltonian, but 

have otherwise made the two-center approximation. 

The detailed evaluation of the E or P parameters is given in 

Appendix A. Briefly, the method consists of obtaining a set of 

linear equations in the pararreters through the natural factoriza- 

tion of the secular equation at Brillouin zone symmetry points and 

along syin..etry lines. The matrix elements of the d part of the 

Hamiltonian can now be obtained froni Slater and Kosterls Table I11 

( reprnd1~ced in Appendix A), providing that the zero of  energy para- 

meters are io for the triplet degenerzcy at f and d+ + y for the 

doutlet; degeneracy where Y = 0.008 Ry. in Cu. 

he conclude by discussing the four second neighbor E para- 

meters. These were included in the determination of parameters 

discussed in Appendix A, but they were found to be so small ((0.001 Ry.) 

as to have a negligible effect on the band structure. For this 

reason, we have not included them in our final scheme. Altogether, 

this leaves the 5 x 5 d-d block parameterized In terms of d+, y, 



ddr , ddr and dd6 . - - - 
IV. Representation of Conduction Bands. 

At first glance, the calculated conduction bands of transi- 

tion and noble metals appear to be nearly free electron in charac- 

ter. 

deviations In the lowest conduction band, depending on whether one 

Iiowever, on closer examination, one sees that there are marked 

is above or below the d bands. 

the symnetry points X and L are much larger than those found in 

ttsimple" metals such as Al. 

Moreover, the Bragg splittings at 

To illustrate these deviations, we have plotted In Fig. 2 
. .  

SegaUls results2' for the first and second conduction bands in A1 

and the corresponding bands in Cu?' 

are responsible for several differences in behavior which we analyze 

In two limits. 

It is clear that the d bands 

In the first, the conduction band is close to a d 

band of the same symmetry. Here hybridization has taken place-- 

the d band and conduction band are split equally above and below 

r;he poirlt of C T O B B O V C ~  ir. t h e  ~ h s e n c e  of interaction. 

this splitting the direct c-d effect. 

We call 

In the second limit, the conduction band is well above the 

d bands. 

tron band by a roughly constant amount. 

shifts are different for the various symmetry directions ( l o o ) ,  
(110), and (lll), being in the ratio (1:2:1) respectively. 

that this is also the ratio of the number of d bands whose group 

representation I s  the same as the lowest conduction band for these 

three symmetry directions.) Thus, If we wish t o  incorporate these 

There the conduction band is shifted above the free elec- 

Note, however, that the 

(Note 
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deviations into the secular equation, we must have terms that are 

both angularly as well as radially dependent. 

The hybridizing and repulsive effects are indicated for the 

energy bandslg of Cu along the (110), (100) and (111) symmetry a:-2s 

in Fig. 3 (a)-(c), respectively. Our task now is to construct an 

analytic representation of these effects. Procedures for obtaining 

the hybridizing terms will be discussed in the following section. 

To determine the repulsive terms, we assume that in terms of 

pseudoplane wave states Ik> - the conduction band state has 

the form 
- 

where the normalizing factor Ck is given by 
2 

I 

Our assumption of d isotropy can be used to determine the ortho- 

gonality coefficients M (k) as follows. Let a d basis function 

be written as 
d.n - 

Id.) = fdn (E) = 'nF: (x/r9 y/r, '/') g(r> 

d where Cn is the normalizing factor for the cubic harmonic Fn . 
Then 

Because of d isotropy f is a function only of k, and not of - k. 
explicity parameterization of f(k) is given below. 

(4.2) 

(4.3) 

(4.4) 

The 
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Matrix elements i n  the  4 x 4 conduction block are g iven  by 

The terms Vk - k t  r ep resen t  the  sum o f  t he  matrix elements of the - -  
c r y s t a l  p o t e n t i a l  V and the  r epu l s ive  p o t e n t i a l  VRc between 

r e c i p r o c a l  l a t t i c e  plane waves7J8. 

and (200) r e c i p r o c a l  l a t t i c e  vec tors .  For K 

can apply  the  gene ra l  c a n c e l l a t i o n  arguments 

T h i s  l eaves  u s  w i t h  two conduction band pseudopotent ia l  parameters 

We l e t  Ki denote a l l  t he  (111) 

l a r g e r  than Ki, we 

and set  V ( K  ) = 0. 3 
A 

One f i n d s  t h a t  Vlll and V200 a lone  produce band gaps comparable 

t o  those  of t he  " s imple"  metals.  I n  Fig. 2, we have l a b e l l e d  t h i s  

part  of t he  s p l i t t i n g  of L1 and L2' by 2Vlll. 

The d-d o r thogona l i ty  terms i n  (4.5) a r e  

where H d n J d n l  i s  the  appropr ia te  ma t r ix  element between the  t i g h t -  

binding d s t a t e s  contained i n  the d-d block. The c r o s s  terms can 

be shown t o  have the  form 

I1 + I11 = v - 2(IV) 



where g(k) is the hybridizing form factor discussed in section 5. 

For our matrix element we finally have 

- - -  - 
We must also consider the terms 

(4.10) 

(4.11) 

where OT represents positive orthogonality terms. 

factors in (4.11) make the diagonal coefficient of E unity. 

off-diagonal OT are inconvenient, and if retained would complicate 

the machine solution of the secular equation conslderably. 

The normalization 

The 

In the pseudopotential approximation to the OPW method the 

terms E(0T) are grouped with the terms -Ed(OT), which are represen- 

ted by IV in (4.10). 

average plane wave energy) and assumes that the d bands are narrow 

( p  -TI. a The resulting OT are proportioned to - 5 and are 
manifestly invariant to a change In the zero of energy. 

- 
One then makes the replacement E *%Ec (an 

'd 

In our case, we have found it simpler to proceed as follows, - 
The conduction band width Ec is large; in fact &Ec > (T - Ed). 
However, one can consider the OT in two limits: 

overs and near the (200) and (111) Bragg scattering planes. In 

the former case direct calculation shows that very good results 

are obtained by neglecting the OT altogether compared to the hy- 

bridization terms. This is not surprising, for the hybridization 

near s-d cross- 
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terms are large In magnitude and have a larger effect because of 

the quasi-degeneracy of the d bands and conduction bands. 

On the other hand, near the Bragg scattering planes the non- 

diagonal OT can be made small by a proper choice of the zero of 

energy. 

good results for conduction band states qt L, X and W. 

We have found that setting E (X) = X 2 + I /  = 0 gives 

[ By neglecting E (&) + v  at L and W, we In effect, absorb 
0 .  

small OT into our pseudopotential parameters. Again direct cal- 

culation shows that the error incurred ls small.] 

From d isotropy, one can see that as k 3 0, f(k) is of order 

Thus a convenient form for f(k) is k2. 

where j,(x) is the second spherical Bessel function that is ob- 

tained In the OPW method by expanding plane waves in terms of Le- 

gendre polynomials. To Improve convergence f ( k )  is cut off beyond 

i t s  sezznc! ==de. 

Fig. 4, we show f(k) explicitly. The procedure used to determine 

A and Ro Is described in Appendix B. 

The veluo  nf LR= is 2 = 9  for Cu and A = 1.3 . In 

The orthogonality terms are responsible for the large Bragg 

spllttings at X and L, which are asymmetric with respect to the 

free electron energies at these point. For example, neglect the 

effects of s-d hybridization (section 5) and consider the conduction 
band structure associated with only the two lowest plane waves near 

X or L (X4, and X1, or L2, and L1). Here the lowest two bands have 



wave vector & and -&. We extract from the secular equation these 

degenerate levels giving a 2 x 2 determinant: 

/ ~ ~ + a - ?  a + v2g I 

+ vo 
2 where 1 is the eigenvalue, K is the kinetic energy, VZK is 

for L and. X respectively, and a is the term derived 3 1 1  Or v200 
from orthogonality. Solving this simple determinant yields: 

(4.14) 

Hence we see that for the lower (odd symmetry) eigenvalue the ef- 

fect of orthogonality is identically zero, whereas for the higher 

(even symmetry) level 2a is added. The asymmetry of the repulsive 

term a in the two eigenvalues shows that marriage of tight-binding 

and piaiie xzve techr? iques requires orthogonalization of the plane 

wave states to the d states. 

Another approach which reveals a relation between the tight- 

binding diagonal block and the plane wave block, and which is in- 

dependent of s-d hybridization,is based on &*E perturbation theory 
near X or L. One can then show that orthogonalization terms in 

the latter block are required to balance overlap (finite band width) 

terms in the d block. 16 
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V. s-d Hybridization. 

' In this section we consider the matrix elements of the Hamil- 

tonian in the off-diagonal blocks c-d and d-c. Although the con- 

duction basis states given by equation (4.1) have been orthogon- 

alized to the d basis states, c-d matrix elements will still be 

non-zero in general, In fact near c-d cross-overs, where the 

orthogonality terms are small, the hybridization terms alone 

separate c and d terms belonging to the same irreducible rep- 

resentations. 

It is consistent within our isotropic approximation to rep- 

resent the crystal potential as a superposition of spherically 

symmetric atomic potentials. Just as second-neighbor d-d over- 

lap was found to be small compared to nearest neighbor overlap, 

so we neglect nearest neighbor overlap in computing the hybrldi- 

zation term. Thus we regard the mixing as derived from inter- 

actions in a spherically symmetric central cell. 

Using (4.1) we have 

(5 .1)  

Strictly speaking H1.in (5 .1)  includes both the crystal potential 

and the repulsive terms arising from orthogonalization of the 

plane wave to the s and p core states. With complete iso- 

tropy the latter would vanish in determining the matrix element 

(5.1) with d states. In any case we are not concerned here with 
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t h e  Geta i l s  o f  (5.1). For our  purposes i t  i s  s u f f i c i e n t  t o  wri te  

where g ( k )  i s  an i s o t r o p i c  hybr id iz ing  form f a c t o r .  

absorpt iof i  of t h e  normal iza t ion  f s c t o r ,  Ck, t h e  d e f i n i t i o n  ( 5 . 2 )  

i s  c o n s i s t e n t  wi th  ( 4 . 9 ) .  

With t h e  

- 

To be completely c o n s i s t e n t  one should r ep resen t  t h e  f i r s t  

term on the  r i g h t  hand s i d e  o f  (5.1) by a form f a c t o r  g ' ( k )  and 

determine g ( k )  from g ' ( k )  us ing  (5 .1) .  I n  p r a c t i c e  t h e  e f f ec t s  

of  hybr id i z ing  are dominated by the  f i rs t  term, and i t  i s  not  

p r o f i t a b l e  t o  c a r r y  through t h i s  separa t ion .  
Again it  can be shown t h a t ,  as k + 0, we have g(  k )  + k 2 . 

Thus f o r  small k we s e t  

w i t h  LR, = 2 . 9  and B = 13.8 eV i n  Cu 

a l i n e a r  cu to f f  a t  l a rge  k, i n  F i g .  5. 

. We show g(k), inc luding  

For a given c r y s t a l  p o t e n t i a l  and an assumed d wave func t ion  

( e .g . ,  t aken  from t h e  f r e e  atom) we could eva lua te  ( 5 . 1 ) .  

t o  o b t a i n  agreement wtth APW c a l c u l a t i o n s  i s  would then be neces- 

s a r y  t o  Include t h e  e f f e c t s  of h i g h e r  plane waves on t h e  d s ta tes .  

For  r easons  d iscussed  i n  our  in t roduc t ion  and summary, t h i s  i s  j u s t  

what we wish  t o  avoid.  The form f a c t o r  g ( k )  introduced here  in-  

However, 
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cludes these effects consistently both in equation (5.2) and 

in equation (4.9). 
In Appendix B we discuss in detail the method used to deter- 

mine g(k). 

mining the d band parameters. 

of symmetry different from the conduction band. Here we use d 

band states along symmetry lines of symmetry types the same as 

those of the crossing conduction bands. Between these d and 

conduction bands we have both hybridization and orthogonality 

terms. 

[As discussed in the preceding section, we found it convenient 

to neglect certain orthogonalit,y contributions to the matrix ele- 

ments in the region, because of its tight-binding character. Had 

we retained these terms, and introduced other (Less accurate) ap- 

proximations instead, the orthogonality terms could have been 

forced into the form (E-E ) 

explicitly how to separate the hybridization splittings from the 

orthogonality terms, by assuming that the latter vanish near s-d 

crossovers and using the construction of Fig. 3.1  Indeed we find 

that near s-d crossovers the hybridization terms actually dominate 

so strongly as to yield an unambiguous separation. On the other 

hand, near the zone faces where Bragg scattering takes place, 

the orthogonality terms dominate and the hybridization form 

It is similar to that described in section 3 for deter- 

There we considered only d band states 

The effects of the former are larger near s-d crossovers/ 
I 

(k)12. In this form one can see 
d I'd, 

factor can be determined by iteration. 

Another method for separating hybridization from orthogonality 



16 terms nea r  t h e  zone f a c e s  r e l i e s  on t h e  &.e p e r t u r b a t i o n  theory  

near  X and L. T h i s  method i s  extremely accu ra t e  i n  t h e  immediate 

v i c i n i t y  of symmetry po in t s ,  but t h e  i n t e r a c t i o n  method descr ibed  

I n  Appendix B y l e l d s  more genera l  results t h roughou t  t h e  B r i l l o u i n  

zone. These a r e  a l so  q u i t e  accilrate,  and appear t o  approach t h e  

l i m i t a t i c n s  inhe ren t  i n  t h e  ansa t z  o f  d i so t ropy .  

V I .  Evaluat ion and Simple Applicat ions 

To f i t  the d bands of a monatomic f c c  metal  us ing  our  method, 

c e r t a i n  parameters must be spec i f i ed .  Fora the conduction bands 

a lone  t h e r e  a r e  two parameters--Vlll and V200. The p o s i t i o n  and 

shape OF the d bands a lone  are f ixed  by f i v e  parameters--& ( t h e  

b q n d  energy r e l a t i v e  t o  t h e  conduction bands) ,  dda, ddn, dd6, 

and the th ree -cen te r  parameter y. F i n a l l y  the s-d i n t e r a c t i o n s  a r e  

s p e c i f i e d  by A, B, Ro and R1 i n  equat ions (4.12) and (5.3). 

convenience t hese  e l e v e n  pirameters a r e  l i s t e d  i n  Table VI .  Values 

are g iven  t h e r e  which f i t  t he  energy bands r,f Cu as determined 

by Burdick from ana - independen t  p o t e n t i a l  u s ing  t h e  APW method 

as w e l l  those  c a l c u l a t e d  by Sega l l  us l r -g  an 1-dependent p o t e n t i a l  i n  

t h e  m u l t i p l e  s c a t t e r i n g  formulation" . 

For 

19 , 
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BJ examining t h e  t a b l e  one n o t i c e s  s e v e r a l  d i f f e r e n c e s  between 

B u r d i c k ' s  and S e g a l l ' s  c a l c u l a t i o n s  which a r i s e  from the !-dependent 

p o t e n t i a l  used by the  l a t t e r .  S e g a l l ' s  d wave f 'unctions a r e  more 

extended than  are Burdick ' s .  This i s  r e f l e c t e d  i n  the  d band ove r l ap  



parameters, which a r e  about 308 g r e a t e r  f o r  S e g a l l ' s  bands than f o r  

Burdick ' s .  The o r thogona l i ty  and hybr id i za t ion  s t r e n g t h s  ( A  and B, 

r e s p e c t i v e l y )  a r e  208 and 58 g r e a t e r ,  r e spec t ive ly .  (We be l i eve  tha t  

t h i s  i n d i c a t e s  that  the  two e f f e c t s  cannot be combined i n t o  one.) 

The pseudopotent ia l  parameters Vlll and V200 a r e  a l s o  changed, and 

are l a r g e r  f c r  S e g a l l ' s  bands thsn  f o r  E?urdickts, r e f l e c t i n g  the  f a c t  

that  t h e  b-dependent p o t e n t i a l  l eads  t o  g r e a t e r  c-d d i f f e rences ,  and 

somewhat s t ronge r  c-c i n t e r a c t i o n s .  

change by 58 and 168, r e spec t ive ly ,  which a g a h  suggests  the  inde-  

pendence of the  hybr id iz ing  and or thogonal i ty  terms. 

The s c a l e  f a c t o r s  Ro and R1 

The accuracy of the scheme can be t e s t e d  i n  seve ra l  ways. The 

o v e r a l l  ms dev ia t ion  between o w  valves  a2d those of b r d i c k  f o r  

the f i r s t  s i x  bands (5 d bands a2d lowest conduction band) a t  89 

p o i n t s  of  the B r i l l o u i n  zone i s  0.08 eV. The values  a t  r, X, L and 

W a r e  compared i n  Table IV;  f o r  these po in t s  the  rms dev ia t ion  i s  

0.07 ev. S imi la r  r e s u l t s  are obtained i n  f i % t i n g  S e g a l l l s  bands. 

The most c r i t i c a l  t es t ,  of t h e  B s r m P t e r i z a t i d ?  l a  GGt.dned by com- 

paring t h e  mis dev ia t ion  of  the  s e t  of' 2 C  pn in t s  used tzJ determine r e l a -  

t i o n s  among the  parameters f i t t i n g  SL;rdick's bands w l t h  that  of t he  

s e t  of 49 po in t s  no t  used; t h e  two v51ues a r e  0.r3'7 and 0.08 ev, 

r e s p e c t i v e l y .  It caq be seen t h a t  wLtkin s t a t i s t i c a l  u n c e r t a i n t i e s  

the d e v i a t i o n s  are i d e n t i c a l .  Moreover, t h e  u n c e r t a i n t i e s  i n  var -  

i o u s  APW Cu energy l e v e l s  ( a p a r t  from those assoc ia ted  with do,  the 

p o s i t i o n  of t he  d bands r e l a t i v e  t o  the coridzction bands) are s t i l l  



l a r g e r  t,han these  mns dev ia t ions ,  2 9  ::ha% a rtlore &(;carate f i t  might 

no t  be s i g n i f i c a n t .  Finally t he  l e v e l s  at X, L, K and W i n  t he  

second cmd’iilstion band a r e  reproduced w i t h  an accuracy comparable 

t o  tha5 q f  the  f i rs t  p r i n c i p l e s  c a l c ~ l a t i ~ x s .  

As a simple a p p l i c a t i 2 3  cf‘ o;.o ez5err.e we hsve c a l c u l a t e d  t h e  

densi5y of s t a t e s  g ( E )  i n  the  d Sxid regi.>r, b o t h  w i t h  and without 

mixing 121‘ the  d bands and condu.ckir,> bazds. I n  the  c a l c u l a t i o n s  

p re se r -xd  below we have cgnstrucfed hlst.--~gra.m derlei5ies of s t a t e s  

based on tLe lowest 6 e igenval- ies  o f  c , i i r  9% c r d e r  s e c u l a r  equa- 

t i o n s  a t  4500 randomly s e l e c t e d  po ln t s  i r l  l / % t h  o f  the  B r i l l o u i n  

zone. 
occ JputiO ‘?, 

With an energy i n t e r v a l  of O.OC25 ryd t h i s  g ives  an average A 

of 35.3 an8 an rms f lus t c s+ . i cn  ‘2  r., f . f *  akoz t  5$. If oRe so  “1) d. 

d e s i r e s  (as  we d i d  i n  t h e  comparisons Pelow) the same random 

s e l e c t l c 4 n  can be used i n  each s e t  of samples. 

We have considered t h r e e  band s t r u ? t u r e s  r e l a t e d  t o  Burdick’s  

Cu hands. The f i r s t ,  given i n  Fig. 6 ,  ~ ( ‘ J P T ’ F S P C J T ~ S  t o  t h e  d bands 

a lone .  This ?age (which hhs kee? i.-,l.::-;.Iafed ber”r:?e‘--’) was used 
.7 2 

as a check or, the  technique. hie ~ e e  ~’3.35 t;kls I s  qS:te similar t o  

t h e  results obtained previously,  ~?xi:cpf; thst. o u r  Fig. 6 has nore 

s t r u c h r e  due t o  the seven times l ~ ~ g e . r o  r a n d m  sample. 

I n  the  o t h e r  two cases  (abown I” Figs. 7 arld 9) w e  have added 

t h e  s-d ln te r*ac t lons  t o  the  bare d-barA striict:x-e of Fig. 6. The 

band parameters f o r  case 2 a r e  taken fi4om the  f i t  t o  Burdlck’s  

c a l c u l a t i o n  d iscussed  i n  preceding s e c t i m .  Case 3 has the  same 
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band parameters,  except  t ha t  t h e  p o s i t i o n  o f  t h e  conduction bands 

has been changed wi th  r e s p e c t  t o  the  d band complex. Here w e  have 

inc reased  the zero  of  energy do of t h e  d bands r e l a t i v e  t o  t h e  

conduction bands, l eav ing  the remaining parameters unchanged. 

Case 2 (Fig.  7) has d = +5.8? eV. ( coppe r - l i ke ) ,  whereas Case 3 

(Fig.  8 )  takes do = +7.20 e V  ( n i c k e l - l i k e ) ?  
0 

By comparing Fig. 8 w i t h  Fig. 7 w e  see that s h i f t i n g  t h e  

conduction bands r e l a t i v e  t o  t h e  d bands l eaves  the d e n s i t y  of 

states throughout most o f  t he  d band reg ion  a l n o s t  ~nchanged .  

T h i s  i s  what one would expect  from a r i g i d  band model, neg lec t ing  

s-d mixing a l t o g e t h e r .  Both t h e  l a r g e  peaks i n  the d e n s i t y  of s t a t e s  

n e a r  0.3 and 0.4 ryd. and weaker peaks near  0.22 and 0.35 ryd. are 

l i t t l e  changed, i n d i c a t i n g  tha t  they a r i s e  from s t a t e s  o f  almost pure 

d c h a r a c t e r .  

I n  Fig.  7 and Fig. 8 we have i n d i c a t e d  ene rg ie s  a t  t h e  symmetry 

p o i n t s  r, x, L and w. T'nese produce V ~ R  Enve edges i n  the d e n s i t y  

of  s ta tes .  Other c r i t i c a l  po in t s  are important,  however, and these  

are n o t  l o c a t e d  a t  symmetry points .  (E.g. ,  t he  peak i n  the  d e n s i t y  

of states nea r  the t o p  of t h e  d band, which i s  commonly supposed t o  

e x p l a i n  the  h igh  s p e c i f i c  h e a t  of N i ,  i s  caused on the  higher  s i d e  

by the L3 edge, and on t h e  lower  s i d e  by an u n i d e n t i f i e d  c r i t i c a l  

po in t .  ) 



I 

VII. Conclusions 

The aim of t h i s  paper has been t o  develop a combined i n t e r -  

p o l a t i o n  scheme which could r ep rodwe  the energy bands of  t r a n s i -  

t i o n  and noble netals wi th in  0.1 eTJ and which would depend on the  

smallest, poss ib l e  number of parameters. 

have sham from APW c a l c u l a t i o n s  f o r  C a  that  

I n  reaching our  goa l  we 

(1) Only nea res t  neighbor i n t e r a c t i o n s  i n  the two-center 

approximations ( p l u s  one three-cerAter tern) are requi red  f o r  the  

d bands; 

( 2 )  Only two pseudopotent ia l  parameters are requi red  t o  de- 

s c r i b e  the  lowest conduction band; 

( 3 )  T k t  conduction band-d baxd h t e r a c t i o n u  are of two kinds. 

The f irst ,  hybr id iza t ion ,  i s  well known, but i t s  magnitude has 

been evaluated and it  has been shcwn (apart  from sphe r i ca l  har- 

monic f a c t o r s )  t o  be i s o t r o p i c .  The presence o f  t he  second i n t e r -  

ac t ion ,  a repuls ive  one arising from t h e  requirement of' or thogonal i -  

Z a t i o w l  uf L - - a -  L J a D I O  U V U v r - . ,  n+-Q+nc had mt  prev1ci:sly been rezognized i n  APW 

c a l c u l a t i o n s ;  

( 4 )  both conduction band-d band i n t e r a c t i o n s  are descr ibable  I n  

terms of form fac to r s .  Although the  f a c t o r s  a r e  similar, they 

appear  t o  be Independent. 

Some of the assumptions upon which our  c a l c a l a t i o n s  are based 

have been discussed i n  seve ra l  recer.t papers 24,25. The d bands are 

regarded as a resonant  l e v e l  overlapping the conduction band, and 
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the phase shift of the resonant level is introduced using 

scattering theory. 

as OUP results demonstrate explicitly that an abstract approach can 

reproduce APW or multiple scattering calculations very accurately. 

Although previous formal discussions based on phase shifts have not 

been able t o  separate hybridizing and orthogonality terms, we have 

showr, that both terms must be included to achieve high accuracy. 

A major unsolved problem for the resonance theories is how to in- 

corporate five (rather than one) d resonance levels into the theory. 

We have avoided this problem at the outset and then have gone on 

to demonstrate (we believe f o r  the first time) the validity of the 

two-cecter approximation. A precise sense in which the resonance 

These discussions are entirely formal, where- 

analogy is valid is analyzed in the follcwlng paper 16 . 
Because of the simplicity and generality o f  the interpolation 

scheme, It should have wide applications to many problems in the 

quantum structure of materials containing overlapping conduction and 

d bands, just as the slmpie pseudopotentizl method  hes s u c c e s s f h l l y  

treated s- and p-band crystals. 

which follow immediately from the method in its present form. 

Firstly one may determine parametric values to yield very accurate 

fits to observed Fedi surfaces. 

method together with the natural character of the basis states 

(atomic d states or plane wave conduction states) makes calculation 

of direct interband optical spectra, including proper oscillator 

strengths, straightforward. We hope to return to these applications 

elsewhere. 

We mention only two applications 

Secondly the high speed of the 

. ... L. 
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APPENDIX A 

In Table V are listed the twelve parameters 

given by the zeroth, first, and second neighbor general 

overlap integrals. There are two difficulties in deter- 

mining these parameters from a given band structure calcu- 

lation. First, the eigenvectors of an energy level are 

not, in general, wholly d, but have some hybridization 

with the conduction bands. Second, even in those levels 

which are most d-like, the energy level will depend on 

several of these parameters, rather than on one or two. 

Both of these difficulties can be overcohe by 

considering energy levels at points in the Brlllouin 

zone of high symmetry. Then only one, or at most two, of 

the d levels will have a symmetry type Identical to some 

low conduction band, and only these d levels will hybrid- 

ize. The remaining levels at this point can be used to 

determine linear relations among the parameters. In addi- 

tion, along symmetry lines, the secular equation conven- 

iently factorizes into many relations among parameters. 

There is one more criterion for selecting rela- 

tions among the parameters. The points and levels should 

be chosen so that the resultant statistical weight of each 

parameter is approximately the same. This results in 

equal errors in the parameters. Equality in statistical 



weight can be guaranteed if the points used are equally 

spaced along each symmetry line. 

The evaluation of the parameters f o r  copper was 

a simple matter since the energy bands had been calculated 

by Burdick at 89 points in the Brlllouin zone and 2/3 of 

these points were along symmetry lines. Thus, approximately 

150 useful levels remained after combining with 5 d-levels, 
roughly half of which were unhybrldlzed or non-degenerate 

levels. Of these we selected 48, so that each parameter 

was represented approximately flve times. (Note that one 

of the two zeros of energy must appear In each equation.) 

These relations yield the overdetermined linear equations 

where A is the rectangular coefficient matrix, E~ are 

the energy eigenvalues, and X are the parameters. (We J 
sum on repeated indices.) 

- 

The R * M . S  devlation of the X will be mlnlmized 
j 

If 

(A-2) A A*. + X .  =: A . l  F 
‘ L X  L-c: ‘ik‘ ‘9 1 

Calling A L k  A i j  5 C,. and A;k E; =Dk 
then C 

Y 

is a symmetrical, non-singular, square matrix. 
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The d e s i r e d  parameters  a r e  g iven  by 

. (A-3) 

We can s o l v e  ( A - 3 )  u s i n g  s t anda rd  r o u t i n e s  from a computer 

l i b r a r y  such a s  SHARE. 

I n  T a b l e  V we l i s t  these parameters ,  as well 

as t h e  va lues  c a l c u l a t e d  by F l e t c h e r  and Wolfar th .  The 

s i m i l a r i t y  i n  va lues  i s  remarkable,  c o n s i d e r i n g  t h e  d i -  

vergent  sou rces  o f  t h e  t w o  columns. 

By a l lowing  a f u l l  t h ree -cen te red  t r e a t m e n t  o f  

t h e  d bands i n  copper ,  w e  have shown t h a t  an  a d d i t i o n a l  

r e s t r i c t i o n  t o  two-centered o v e r l a p  i n t e g r a l s  makes a 

n e g l i g i b l e  e r r o r  i n  t h e  band s t r u c t u r e ,  Henceforth w e  

shal l  c a l c u l a t e  t h e  d bands i n  two-centered approximations 

excep t  f o r  t he  zero-of-energy parameter  g. Table V I  l i s t s  
6 

t h e  d band m a t r i x  e lements  as  d e r i v e d  from S l a t e r - K o s t e r  . 



APPENDIX B 

The choice of  Bessel  func t ions  j, (kR) t o  parameter- 

i z e  the  h y b r i d i z a t i o n  and o r thogona l i ty  form f a c t o r s  i s  

a n a t u r a l  one. The s c a l e  f a c t o r  R r e p r e s e n t s  an  average 

of t h e  va lues  of r f o r  which the  c-d p o t e n t i a l  i n t e r a c t i o n s  

o r  over lap  ( r e s p e c t i v e l y )  a r e  l a r g e s t .  The b e s t  value of 

R, which should not  change g r e a t l y  from one t r a n s i t i o n  

metal  t o  t h e  next ,  a r e  determined a s  descr ibed below. 

For l a r g e r  va lues  of k t h e  replacement of a weighted 

va lue  o f  j, (kn) over a range of r by a l o c a l  value j, (kR) 

w i l l  obviously be poor ,  because j, (kr) o s c i l l a t e s  i n  s ign .  

This e f f e c t  i s  incorporated i n t o  the  form f a c t o r s  by i n t r o -  

ducing a l i n e a r  c u t o f f  a t  large k. T h i s  c u t o f f  p l ays  a 

small r o l e  i n  our  c a l c u l a t i o n s ,  because of  the  n e a r l y  

s p h e r i c a l  shape of t he  fcc  B r i l l o u i n  zone. However, a 

much g r e a t e r  e f f e c t  i s  expected when the  B r i l l o u i n  zone 

i s  more a n i s o t r o p i c ,  as f o r  bcc c r y s t a l s .  

The " longes t "  radial  sT+ietry dimension o f  t he  f c c  

zone appears  t o  be r C U .  The lcjwest conduc t i z ln  band along 

KX i s  C3, and when t h i s  band i s  continued onto C = rK, i t  

becomes the second lowest conduction band. For t h i s  range 

of k the c u t o f f  e f f e c t s  a r e  important.  They can be separ -  

ated by not ing  t h a t  t he  C2 and C3 d bands a r e  symmetrical 
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with respect to ??254, in the absence of interactions with 

the conduction bands. This symmetry holds well for k 

between r and K/2 so that a linear cutoff was introduced 

between K and3K/2. 

With eleven parameters to be determined, It was neces- 

sary to develop simple schemes to find best values. Our 

scheme proceeded as follows. With the values of the d 

band parameters determined as described in Appendix A, 

A j  B, Ro and R 

2 x 2 and 3 x 3 c-d interaction secular equations along 

were determined approximately by solving 1 

Q j  A,  C and 2. With these approximate values the rms 

deviation of the fit was determined to be about 0.2 eV. 

The parameters were varied by fixed increments and quad- 

ratic interpolation was used to minimize the rms deviations. 

This procedure converged rapidly (5 minutes on an IBM 

7094) and uniquely to the values of the parameters quoted 

in Table 111. 
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TABLE CAPTIONS 

Table I. Ratio of the  energy d i f f e r e n c e s  o f  two c a l c u l a t i o n s  

of t he  valence bond s t r u c t u r e  of K C 1  ( s e e  r e fe rence  9 ) .  

Comparison of our der ived two-center parameters with 

those  c a l c u l a t e d  by FW from Cu’ d wave func t ions .  

d e v i a t i o n  of t he  var ious  va lues  from t h e i r  mean i s  a 

measure o f  t he  v a l i d i t y  af  the  two-center approxima- 

Table 11. 

The 

t i o n .  

Values of model parameters chosen for two copper band 

s t r u c t u r e s  ( r e f .  19 and 2 0 ) .  

d i f f e r e n c e s  between t h e  parameters i s  d iscussed  i n  

Table 111. 

The s i g n i f i c a n c e  of 

s e c t i o n  V I .  

I n t e r p o l a t e d  values of the  lowest seven l e v e l s  a t  r, 
X, L, and W a s  obtained from the  parametr ic  va lues  

l i s t e d  i n  Table I11 a r e  cornpared w i t h  t he  ca l cu la t ed  

va lues  of Burdick ( r e f .  19) and Sega l l  ( r e f .  2 0 ) .  

The f i t  is t tqual ly  g:od Ir! h n t h  cases. (All values  

a r e  l i s t e d  i n  rydbergs.)  

The va lues  of the  Slater-Koster  over lap  parameters 

Ei as obtained f r o m  f i t t i n g  Burdicic:s bard stricture for 

CU a r e  shown i n  column 4. 

with the  values  l i s t e d  i n  column 5 obtained fpom the  

Table IV. 

Table  V. 

These are t o  be compared 

two-center formulae of column 3. The va lues  of  dda) 



dd.rr,and dd6 were a l s o  obtained by f i t t i n g  Burdick’s  Cu 

bands and are l i s t e d  i n  T a b l e  111. The percentage 

d i f f e r e n c e s  l i s t e d  In the  l a s t  column provide an  i n d i -  

c a t i o n  of  the v a l i d i t y  of the two-center approximation. 

Table  V I .  The matrix elements of t h e  d-d block i n  the  two-center 

approximation. 

s imi l a r ly  for y and z .  

The symbol x r ep resen t s  kx a/2 and 



TABLE I 

r15- 'St 0.56 0.27 

r15- 'bl 1.63 0.98 

X 5 t -  X41 1.07 0.52 

2.44 1.26 

0.42 0.24 L3 t -  r15 

r15- L 2 t  
L 3 , -  L*t 2.87 1.51 

2.07 

1.66 

2.05 

1.75 

1 - 9 3  

1.90 

Mean Rat io  = 1.89 



TABLE I1 

Value der ived  Value 
f rorn RMS c a l c u l a t e d  Overlap 

parameter ( 3 . 2 )  - (3 .4)  Mean Deviation $ by mJ 

-0.348 e V  0.0 $ -0.338 e V  dda -0.348 eV 

-0.348 e V  

-0.348 eV 

ddrr +O,163 eV 

+0.192 eV 

dd6 -0.0217 eV 

-0.0217 eV 

-0.0204 eV 

-0.0217 e V  

-0.02 13e V 

8.4 $ +o. 182 e V  

-0.026 e V  
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TABLE 111 

Parameter Burdick Segal l  

+5.84 e V  +4.95 e V  

ddo -0.35 e V  -0.45 e V  

dd.rr +0.18 e V  +0.24 e V  

dd6 -0.02 e V  -0.04 e V  

Y +0.08 e V  -0.01 e V  

d0 
d Bands 

+0.07 e V  +0.26 e V  

+O. 46 e V  +0.55 e V  
vlll 

v200 

Conduction 
Bands 

Orthogonality A 

Ro 

1.29 1-59 

2.88 3.03 

Hybridization B 13.78 eV 13.92 eV 

2.93 3.47 R1 

Errors JT 0.06 e V  0.08 e V  



Level 

r25 I 

12 

x1 

x3 
5 
x5 
x4 I 

x1 

L1 

L3 

L3 

L? ' 
L1 

w2 I 

w3 

w1 

w1 ' 
"3 

'Burdlck point 

-1 . 043 

-0.640 

-0.582 

-0 . 776 

-0.739 
-0.540 

-0 527 

-0.235 

+O. 152 

-0 775 
-0.642 

-0 538 

-0.429 

-0.094 

-0.723 

- O e  671 

-0.585 

-0 527 

+O. 105 
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TABLE IV 

Interpolation 
fit 

-1.043 
-0.647 

-0.574 

-0 . 776 
-0.740 

-0.535 

-0.534 

-0.243 

+0.145 

-0 774 
-0.648 

-0.543 

-0.435 

-0.099 

-0.718 

-0.676 

-0.583 

-0 536 

+0.116 

Segall  

-0 836 

-0 505 

-0.433 

-0.666 

-0.630 

-0.383 

-0.366 

-0.024 

+o. 389 

-0.646 

-0,511 

-0.380 

-0.247 

+o. 189 

-0 . 607 

-0 537 
-0.438 

-0 . 365 
+o. 310 

Int. 
fit 

-0 . 837 
- 

-0.510 

-0.426 

-0,667 

-0.634 

-0 376 

-0 . 371 
-0.032 

+O. 401 

-0.638 

-0.518 

-0.385 
-0.241 

+0.201 

-0 599 
-0.536 

-0 438 

- 0.371 
+0.313 



39 

3 

0 

0 
0 

m 
Ln 
M 

a 

Y 

a3 
Ln 
M 

a3 
I 

3 
t 
a 0 

n 

0 
0 
0 . .  - 
P 
w 6 

rl 
pc 

0 

0 
. 

0 
Ln cu 

a 

T 

0 
Ln 
cu 

? 

>" 

+O 

t 
> 

a 

n 

0 
0 
0 
1 

cu 
Fc 
I 

N 
M 
(P 

QJ 

.) 

? 

LAM 

ca 
N 

pccu 

0 0 0 0 

d 0 0 
0 

0 

a- b 0 

rl 

a3 
b 
0 

0 + 
. 

m 
03 
0 

0 + 
0 

n 
rg 

? t= 
a a 

d% 

n 

d 
rl 
0 
v 

2 
d w 

=I- 
& 

0 M b 
=t 0 b 
rl d rl 

e a 

0 0 0 + I + '. 

rl a- 
d 

0 + 
. 

n 
rg a 

b a a 

7 

@ 
I 

n 

0 
rl 
d 
W 

74 

P 

I 
& 
N 
M 
.I 

w 

\D 
pc 

0 
0 
rl 

0 

9 

n 
a a a 
M 

a a 
;f 

v 

rlk 

n 
0 
rl 
d 

cp 

I 
N 
N 
M 

cp 

v 

k 

.) 

F;( 

w- 
B 
N 

b 
pc 

M 
u3 
rl 

0 + 
0 

I= a a 

a3 
pc 



40 

P -  
--6 a" : a  

e 
0 

6 

h 
I 

K 

cu 

cu - 
R 
v 

n 

k 
I 

M 

cu 

- 
I? 
v 

h 

A 

K 

cu 
I cu - 

K" 
v 

n 

A 
cu 

I 

N 

A 
I 

K 

cu - 
cu 

cu 
v 

F o -  x - + - _  

h 

k 
fi 

I 

N 
M 

cu 

I 

k 
I 

cu 

M, 

A 

k 
cu 

I 

N 
M 

cu 
- 
R 
I 

X 

cu 

cu 
v 



Figure Captions 

The B r i l l o u i n  zone of the f . c . c .  l a t t i c e  showing the 1/48 ' th  

p r i m i t i v e  wedge used i n  the  c a l c u l a t i o n s .  

Schematic r e p r e s e n t a t i o n  of the h y b r i d i z a t i o n  and r e p u l s i v e  

e f f e c t s  between the Cu d bands and the lowest  two conduction 

bands a1 a.g the  syI;lmetry l2ne A .  OnlX the bands of Al sym- 

metry are shown. The dashed l i n e s  show the unperturbed bands 

of  A1 o r  the t igh t -b ind ing  d band of Cu i n  the absence of these 

two e f f e c t s .  (The A1 bands have been sca l ed  so  

(G)cu. a t  k = L . )  

The energy l e v e l s  of Cu. The s o l i d  c i r c l e s  r ep resen t  t h e  

c a l c u l a t e d  va lues  of Burdick ( r e f e r e n c e  19) and the  s o l i d  l i n e s  

r e p r e s e n t  the i n t e r p o l a t e d  bands obta ined  us ing  the  parameters 

l i s t e d  i n  Table 111. The small d i f f e r e n c e s  shown on t h e  s c a l e  

o f  the s o l i d  c i r c l e s  a r e  genuine and can be a sc r ibed  t o  break- 

down of  the a n s a t z  of d i so t ropy .  

The r e p u l s i v e  form f a c t o r  f ( k )  exhibits a maximum f o r  k nea r  the  

B r i l l o u i n  zone edges. 

the parameters used t o  f i t  Burd ick ' s  band s t r u c t u r e  ( s e e  Table  111). 

The h y b r i d i z a t i o n  form f a c t o r  g ( k ) .  

symmetry require 's  t-hat gf i ic j  = o for - -  k = L and - X, where the 

prime i n d i c a t e s  the d i r e c t i o n a l  d e r i v a t i v e  o f  g ( k )  - normal t o  

the L o r  X f ace  ( r e s p e c t i v e l y ) .  

s u a a e s t s  that I f  t h i s  i s  s a t i s f i e d  e x a c t l y  R should be f l a t  f o r  

The va lue  of f ( k )  shown here i s  taken from 

One can show that  c r y s t a l  

Our assumption of g i s o t r o p y  then 

vu ~ - -  



k between L and X . We have chosen t o  ignore  t h i s  condi- - - 
t i o n ,  because as shown here gl(X) i s  very  n e a r l y  zero, and 

gt(L) 1s small. As a r e s u l t  g has a simple a n a l y t i c  form. 

The l i n e a r  cu t -o f f  d i scussed  i n  Appendix B begins  a t  4ak/.rr = 

9.3. 

The d e n s i t y  of d barld states i n  Cu r e t a i n i n g  the width due t o  the 

t igh t -b ind ing  I n t e r a c t i o n s  ddo, ddn, dd6 but  omi t t ing  t h e  conduc- 

t i o n  bands as w e l l  as t h e i r  i n t e r a c t i o n s  with the d bands. 

6 )  

Five maJor peaks appear  I n  the d e n s i t y  of s t a t e s ,  a t  0.27, 

0.29, 0.33, 0.36 and 0.39 ryd. 

The d e n s i t y  of d band and conduction band s t a t e s  us ing  the  

Burdick d band parameters as i n  Fig. 6, but  inc luding  i n t e r -  

a c t i o n s  wi th  the  conduction bands. I n  the  d band reg ion  the  

d e n s i t i e s  of states a r e  q u a l i t a t i v e l y  similar, but  

7) 

mk..o the  ..ranir - ..----.. c. - . . - - & * & - & 4 - - -  A 4 Q + - - - n - e n "  n--rr-n-t 
AAULIICI-VUU yuar u A & a  v G UIA A u -A G ayyaA G A A  u A L A U U  U L A ~  y r w a  

p r e s e n t  i n  Fig. 6 a t  0.27 ryd. has disappeared, whi le  t h e  0.29 

and 0.33 ryd. peaks o f  Fig. 6 have merged i n t o  one peak here 

a t  0.31 ryd. The peak a t  0.22 ryd and the  shoulder  starting 

n e a r  0.15 rgrd. arise from those states nea r  t h e  bottom of  the  

d band which hybr id ize  s t rong ly  wi th  the conduction band. 

Here the conduction band has been shifted r e l a t i v e  t o  the d 

band b y 4 . 4  eV. 

small, as can be seen by comparing with the d e n s i t y  of states 

shown i n  Fig. 7. For many purposes t h i s  provides j u s t i f i c a t i o n  

8) 
The e f f e c t s  on the d e n s i t y  of s t a t e s  are very 
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of the rigid band model often used to discuss the properties 

of transition metal alloys. 
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